2 Ruído de Fase em Osciladores

2.1. Introdução

Ao longo do presente capítulo serão introduzidos os conceitos básicos que determinam o comportamento de osciladores em termos de ruído, amplitude e fase. A utilização de circuitos de realimentação utilizando dispositivos com elevado fator de qualidade será destacada e equações que descrevem o desempenho de ruído de um oscilador realimentado serão desenvolvidas.

2.2. Considerações Gerais

Analisando a resposta impulsional de um oscilador RLC, como o exemplificado na Figura 2.1, é possível extrair a informação da variação periódica no tempo da portadora gerada pelo oscilador, possibilitando então a observação da relação sinal ruído do oscilador e seu ruído de fase espectral [1, 2].

Figura 2.1. Circuito RLC.

Talvez a mais simples abstração de um oscilador é a combinação formada entre a perda de seu circuito e sua energia armazenada. Para simplificar, assumiuse que R representa todas as perdas do circuito ressonante.

Energia armazenada:

$$E_{stored} = \frac{1}{2} C V_{sig}^2 \tag{2.1}$$

Desta forma, a tensão entre os terminais do circuito RLC é:

$$V_{sig}^2 = \frac{E_{stored}}{C}$$
(2.2)

A forma senoidal foi assumida para o sinal.

A tensão total de ruído é encontrada integrando a densidade de ruído térmico dentro da largura de banda do ruído do oscilador RLC, como mostra a equação abaixo onde Z(f) é a impedância do circuito RLC.

$$\overline{V}_{n}^{2} = 4kTR \int_{0}^{\infty} \left| \frac{Z(f)}{R} \right|^{2} df = 4kTR \cdot \frac{1}{4RC} = \frac{kT}{C}$$
(2.3)

Combinando (2) e (3) obtém-se a razão sinal-ruído (RSR).

$$\frac{N}{S} = \frac{V_n^2}{\overline{V_{sig}^2}} = \frac{kT}{E_{stored}}$$
(2.4)

Através da Equação 2.4 conclui-se que é necessário maximizar o nível da potência armazenada do sinal a fim de minimizar a relação ruído/sinal.

Neste momento se faz necessário introduzir o conceito de fator de qualidade Q, definido através da relação entre a energia armazenada dividida pela potência dissipada:

$$Q = \frac{\omega_0 E_{stored}}{P_{diss}}$$
(2.5)

Portanto,

$$\frac{S}{N} = \frac{QP_{diss}}{\omega_0 kT} \tag{2.6}$$

A RSR (Relação Sinal Ruído) é diretamente proporcional ao produto fator de qualidade Q multiplicado pela potência dissipada e inversamente proporcional à freqüência de oscilação. Esta relação descreve de forma precisa à operação de osciladores e indica a importância da maximização do fator de qualidade Q.

2.3. Ruído de Fase de um Oscilador

Assumindo a tensão de saída obtida na Equação 2.3, onde a única fonte de ruído é o ruído branco térmico, pode-se representar a corrente de ruído como:

$$\frac{\overline{i_n^2}}{\Delta f} = 4KTG , \quad G = \frac{1}{R}$$
(2.7)

Esta corrente de ruído torna-se uma tensão de ruído quando multiplicada pela impedância de entrada do circuito RLC.

Para uma freqüência de *"offset"* $\Delta \omega$ a partir de ω_0 , a impedância do circuito pode ser expressa de forma aproximada por:

$$Z(\omega_o + \Delta \omega_o) \approx j. \frac{\omega_o L}{2 \frac{\Delta \omega}{\omega_o}}$$
(2.8)

Escrevendo a impedância em função do fator de qualidade não-carregado Q:

$$Q = \frac{R}{\omega_0 L} = \frac{1}{\omega_0 GL}$$
(2.9)

Unindo-se as Equações (2.7) e (2.8), tem-se:

$$\left|Z(\omega_0 + \Delta w)\right| \approx \frac{1}{G} \cdot \frac{\omega_0}{2Q\Delta\omega}$$
(2.10)

Agora, manipulando as Equações (2.7) e (2.10), é possível determinar a densidade espectral quadrática da tensão de ruído:

$$\frac{\overline{v_n^2}}{\Delta f} = \frac{\overline{i_n^2}}{\Delta f} \left| Z \right|^2 = 4kTR \left(\frac{\omega_0}{2Q\Delta\omega} \right)^2$$
(2.11)

A potência de ruído será então:

$$P = \frac{V_n^2}{R} = 4kT \left(\frac{\omega_0}{2Q\Delta\omega}\right)^2$$
(2.11.a)

A Equação (2.11.a) expressa a densidade espectral de ruído de amplitude e fase. Pode-se demonstrar que as contribuições são idênticas, resultando então para o ruído de fase a expressão [1]:

$$P = 2kT \left(\frac{\omega_0}{2Q\Delta\omega}\right)^2 \tag{2.11.b}$$

Então, a equação normalizada para a densidade espectral de ruído, dividida pela potência do sinal oscilante, em uma banda lateral será:

$$\pounds(\Delta w) = 10 \log \left[\frac{2kT}{P_{sig}} \cdot \left(\frac{\omega_0}{2Q\Delta \omega} \right)^2 \right] dBc/Hz$$
(2.12)

Utilizando-se então os resultados obtidos através de um circuito LC paralelo associado a um quadripolo com fator de ruído F, obtem-se:

$$\pounds(\Delta w) = 10 \log \left[\frac{2FkT}{P_{sig}} \cdot \left(\frac{\omega_0}{2Q\Delta \omega} \right)^2 \right] dBc/Hz$$
(2.12.a)

A equação acima comprova que o ruído de fase melhora com o aumento de *Q* e com a potência da portadora.

Devido a várias simplificações, a Equação (2.12.a) apresenta algumas diferenças com relação ao que é realmente medido na prática. Além destas simplificações, quando o ruído de cintilação (*flicker*) é considerado, obtém-se [2, 3]:

$$\pounds(\Delta w) = 10 \log \left[\frac{2FkT}{P_{sig}} \left\{ 1 + \left(\frac{\omega_0}{2Q\Delta\omega} \right)^2 \right\} \left(1 + \frac{\Delta\omega_{1/f^3}}{|\Delta\omega|} \right) \right]$$
(2.13)

A Figura 2.2 descreve então o comportamento do ruído de fase em 3 regiões, isto é [3, 4]:

Figura 2.2. Representação do ruído de fase do oscilador – Fonte: VENDELIN, GEORGE D. Design of Amplifiers and Oscillators by S-Parameter Method, John Wiley e Sons, Inc, 1982, p. 162.

O ruído próximo a portadora é proveniente do ruído de cintilação que ocorre até a freqüência máxima de cintilação f_{cint} com o comportamento $\frac{1}{f_m^3}$. A seção com inclinação de $\frac{1}{f_m^2}$ representa a faixa de freqüência onde o impacto do ruído de cintilação é pequeno para o desempenho do oscilador. Após a freqüência $\frac{f_0}{20}$, o ruído térmico é preponderante [3, 4, 8].

A Equação 2.13 pode também ser escrita da seguinte forma [3, 4, 6]:

$$\pounds(f_m) = 10 \log \left\{ \frac{FkT}{2P_{sig}} \left[1 + \frac{f_{cint}}{f_m} + \left(\frac{f_0}{2f_m Q_L} \right)^2 \left(1 + \frac{f_{cint}}{f_m} \right) \right] \right\} \quad dBc / Hz \quad (2.14)$$

Pertubação Fator de Flicker de Fase Qualidade Noise Onde:

- \pounds (f_m): Ruído de Fase em dBc / Hz
- F : Fator de Ruído
- k: Constante de Boltzman
- T: Temperatura em K

 P_{avs} : Potência média do oscilador em f_0

 f_{cint} : Freqüência máxima de cintilação (*Flicker Corner Frequency*)

 f_m : Freqüência de afastamento (*offset*)

 f_0 : Freqüência central da ortadora

A partir da Equação (2.14) foi possível simular o comportamento do ruído de fase de acordo com a variação da freqüência de "*offset*". Foram executadas diversas simulações a fim de verificar a faixa de freqüência de maior incidência do ruído de cintilação (*Flicker Noise*).

A Tabela 2.1 apresenta os valores das componentes invariáveis da Equação 2.14 utilizadas para o cálculo das simulações.

Componente	Valor
F	3 dB
KT	-174 dBm/Hz
Posc	10 dBm
fo	10 GHz
Q	3000

Tabela 2.1. Componentes invariáveis utilizados para simulação.

A freqüência máxima de cintilação (*Flicker Corner Frequency*) foi alterada em cada simulação para verificar a faixa de freqüência de maior incidência deste ruído. Além disso, com a finalidade de comparar e analisar o impacto do ruído de cintilação na medição, foi simulado através da Equação 2.12 o valor do ruído de fase sem a presença do ruído de cintilação.

2.3.1.					
Simulação	1:	\mathbf{F}_{cint}	=	1	kHz

f_m (kHz)	\pounds (fm) dBc / Hz	f (fm) Sem <i>Flicker Noi</i> se	Diferença (dB)
0	-90	-100	10,00
0,5	-109,7609122	-114,5321251	4,77
1	-117,5424235	-120,5527251	3,01
1,5	-121,8560592	-124,0745502	2,22
2	-124,8124061	-126,573325	1,76
2,5	-127,0502351	-128,5115252	1,46
3	-128,8457487	-130,0951501	1,25
3,5	-130,3426221	-131,4340859	1,09
4	-131,6247997	-132,5939249	0,97
4,5	-132,7454419	-133,6169753	0,87
5	-133,7402736	-134,5321251	0,79
5,5	-134,6344249	-135,3599788	0,73
6	-135,4462259	-136,1157501	0,67
6,5	-136,1894471	-136,8109922	0,62
7	-136,8746898	-137,4546859	0,58
7,5	-137,5102858	-138,0539503	0,54
8	-138,1028995	-138,6145248	0,51
8,5	-138,6579438	-139,1411036	0,48
9	-139,1798737	-139,6375752	0,46
9,5	-139,6723991	-140,1071972	0,43
10	-140,1386419	-140,5527251	0,41

Tabela 2.2. Valores do ruído de fase calculados com f_{cint} = 1 kHz.

Figura 2.3. Gráfico comparativo com $f_{c\,\mathrm{int}}$ = 1 kHz.

			1
$f(k \mathbf{u} \mathbf{v})$	0	\pounds (fm)	Diferença
<i>J_m</i> (кп z)	t (fm) dBc / Hz	Sem Flicker Noise	(dB)
0	-87	-100,5	13,50
0,5	-107,5424247	-114,5321251	6,99
1	-115,7815109	-120,5527251	4,77
1,5	-120,3947789	-124,0745502	3,68
2	-123,5630188	-126,573325	3,01
2,5	-125,9587904	-128,5115252	2,55
3	-127,8766486	-130,0951501	2,22
3,5	-129,4711203	-131,4340859	1,96
4	-130,8329873	-132,5939249	1,76
4,5	-132,0199352	-133,6169753	1,60
5	-133,0708057	-134,5321251	1,46
5,5	-134,0129458	-135,3599788	1,35
6	-134,8663064	-136,1157501	1,25
6,5	-135,6458704	-136,8109922	1,17
7	-136,3631645	-137,4546859	1,09
7,5	-137,027239	-138,0539503	1,03
8	-137,6453246	-138,6145248	0,97
8,5	-138,2232869	-139,1411036	0,92
9	-138,7659468	-139,6375752	0,87
9,5	-139,2773137	-140,1071972	0,83
10	-139,7607562	-140,5527251	0,79

2.3.2. Simulação 2: F_{cint} = 2 kHz

Tabela 2.3. Valores do ruído de fase calculados com $f_{c \, \rm int}$ = 2 kHz.

Figura 2.4. Gráfico comparativo com $f_{c\,\mathrm{int}}$ = 2 kHz.

$f_{\scriptscriptstyle m}$ (kHz)	\pounds (fm) dBc / Hz	\pounds (fm) Sem <i>Flicker Noi</i> se	Diferença (dB)
0	-85	-100,5	15,50
0,5	-106,0811443	-114,5321251	8,45
1	-114,5321236	-120,5527251	6,02
1,5	-119,3033342	-124,0745502	4,77
2	-122,5939186	-126,573325	3,98
2,5	-125,0872886	-128,5115252	3,42
3	-127,0848361	-130,0951501	3,01
3,5	-128,7456137	-131,4340859	2,69
4	-130,1635194	-132,5939249	2,43
4,5	-131,3984562	-133,6169753	2,22
5	-132,4908862	-134,5321251	2,04
5,5	-133,4693692	-135,3599788	1,89
6	-134,3547812	-136,1157501	1,76
6,5	-135,1628236	-136,8109922	1,65
7	-135,9055896	-137,4546859	1,55
7,5	-136,592582	-138,0539503	1,46
8	-137,2313977	-138,6145248	1,38
8,5	-137,8282015	-139,1411036	1,31
9	-138,3880612	-139,6375752	1,25
9,5	-138,915192	-140,1071972	1,19
10	-139,4131352	-140.5527251	1.14

2.3.3. Simulação 3: F_{cint} = 3 kHz

Tabela 2.4. Valores do ruído de fase calculados com $\,f_{c\,\rm int}$ = 3 kHz.

Figura 2.5. Gráfico comparativo com $f_{c\,\rm int}$ = 3 kHz.

		((free)	-
f (kHz)	$f(\mathbf{fm}) d\mathbf{Po} / \mathbf{Hz}$	t (IM) Som Flicker Noice	Diferença
<i>J</i> _m (···· ·· <i>)</i>		Sem Flicker Noise	(ab)
0	-83	-100,5	17,50
0,5	-104,1181979	-114,5321251	10,41
1	-112,771211	-120,5527251	7,78
1,5	-117,7063257	-124,0745502	6,37
2	-121,1326383	-126,573325	5,44
2,5	-123,7403029	-128,5115252	4,77
3	-125,8354488	-130,0951501	4,26
3,5	-127,580558	-131,4340859	3,85
4	-129,0720747	-132,5939249	3,52
4,5	-130,3718328	-133,6169753	3,25
5	-131,5217861	-134,5321251	3,01
5,5	-132,5516655	-135,3599788	2,81
6	-133,4832794	-136,1157501	2,63
6,5	-134,3330813	-136,8109922	2,48
7	-135,1137772	-137,4546859	2,34
7,5	-135,8353749	-138,0539503	2,22
8	-136,5058911	-138,6145248	2,11
8,5	-137,1318422	-139,1411036	2,01
9	-137,7185933	-139,6375752	1,92
9,5	-138,2706121	-140,1071972	1,84
10	-138,7916561	-140,5527251	1,76

2.3.4. Simulação 4: F_{cint} = 5 kHz

Tabela 2.5. Valores do ruído de fase calculados com $f_{c \text{ int}}$ = 5 kHz.

Figura 2.6. Gráfico comparativo com $f_{c \text{ int}}$ = 5 kHz.

f (kHz)		\pounds (fm)	Diferença
	t (fm) dBc / Hz	Sem Flicker Noise	(dB)
0	-80	-100,5	20,50
0,5	-101,3099318	-114,5321251	13,22
1	-110,1387966	-120,5527251	10,41
1,5	-115,2284809	-124,0745502	8,85
2	-118,7918062	-126,573325	7,78
2,5	-121,5218154	-128,5115252	6,99
3	-123,7269151	-130,0951501	6,37
3,5	-125,5714095	-131,4340859	5,86
4	-127,1532194	-132,5939249	5,44
4,5	-128,5353888	-133,6169753	5,08
5	-129,7608735	-134,5321251	4,77
5,5	-130,8602415	-135,3599788	4,50
6	-131,8560065	-136,1157501	4,26
6,5	-132,7652203	-136,8109922	4,05
7	-133,6011004	-137,4546859	3,85
7,5	-134,3740945	-138,0539503	3,68
8	-135,0925995	-138,6145248	3,52
8,5	-135,7634626	-139,1411036	3,38
9	-136,3923377	-139,6375752	3,25
9,5	-136,983946	-140,1071972	3,12
10	-137,5422688	-140,5527251	3,01

2.3.5. Simulação 5: F_{cint} = 10 kHz

Tabela 2.6. Valores do ruído de fase calculados com f_{cint} = 10 kHz.

Figura 2.7. Gráfico comparativo com f_{cint} = 10 kHz.

26

<u> </u>		\pounds (fm)	Diferença
f_m (kHz)	\pounds (fm) dBc / Hz	Sem Flicker Noise	(dB)
0	-70	-100,5	30,50
0,5	-91,50016417	-114,5321251	23,03
1	-100,5095097	-120,5527251	20,04
1,5	-105,7707989	-124,0745502	18,30
2	-109,4976169	-126,573325	17,08
2,5	-112,3836769	-128,5115252	16,13
3	-114,7379764	-130,0951501	15,36
3,5	-116,7253437	-131,4340859	14,71
4	-118,4441664	-132,5939249	14,15
4,5	-119,9579059	-133,6169753	13,66
5	-121,3098931	-134,5321251	13,22
5,5	-122,5310338	-135,3599788	12,83
6	-123,6441476	-136,1157501	12,47
6,5	-124,6665636	-136,8109922	12,14
7	-125,6117519	-137,4546859	11,84
7,5	-126,4903904	-138,0539503	11,56
8	-127,311087	-138,6145248	11,30
8,5	-128,0808825	-139,1411036	11,06
9	-128,8056087	-139,6375752	10,83
9,5	-129,4901509	-140,1071972	10,62
10	-130,1386419	-140,5527251	10,41

2.3.6. Simulação 6: F_{cint} = 100 kHz

Tabela 2.7. Valores do ruído de fase calculados com f_{cint} = 100 kHz.

Figura 2.8. Gráfico comparativo com f_{cint} = 100 kHz.

0		\pounds (fm)	Diferença
f_m (kHz)	\pounds (fm) dBc / Hz	Sem Flicker Noise	(dB)
0	-67	-100,5	33,50
0,5	-88,50068102	-114,5321251	26,03
1	-97,52076291	-120,5527251	23,03
1,5	-102,7927088	-124,0745502	21,28
2	-106,530105	-126,573325	20,04
2,5	-109,4266653	-128,5115252	19,08
3	-111,7913882	-130,0951501	18,30
3,5	-113,7891031	-131,4340859	17,64
4	-115,5181981	-132,5939249	17,08
4,5	-117,0421357	-133,6169753	16,57
5	-118,4042475	-134,5321251	16,13
5,5	-119,6354402	-135,3599788	15,72
6	-120,7585341	-136,1157501	15,36
6,5	-121,7908591	-136,8109922	15,02
7	-122,7458862	-137,4546859	14,71
7,5	-123,634294	-138,0539503	14,42
8	-124,4646913	-138,6145248	14,15
8,5	-125,2441193	-139,1411036	13,90
9	-125,9784108	-139,6375752	13,66
9,5	-126,6724518	-140,1071972	13,43
10	-127,3303758	-140,5527251	13,22

2.3.7. Simulação 7: F_{cint} = 200 kHz

Tabela 2.8. Valores do ruído de fase calculados com f_{cint} = 200 kHz.

Figura 2.9. Gráfico comparativo com $f_{\rm cint}$ = 200 kHz.

2.3.8. Simulação 8: F_{cint} = 500 kHz

		\pounds (fm)	Diferença
f_m (KHZ)	\pounds (fm) dBc / Hz	Sem Flicker Noise	(dB)
0	-67	-100,5	33,50
0,5	-84,52778397	-114,5321251	30,00
1	-93,55434623	-120,5527251	27,00
1,5	-98,83274993	-124,0745502	25,24
2	-102,5765815	-126,573325	24,00
2,5	-105,4795549	-128,5115252	23,03
3	-107,8506688	-130,0951501	22,24
3,5	-109,8547525	-131,4340859	21,58
4	-111,5901944	-132,5939249	21,00
4,5	-113,1204571	-133,6169753	20,50
5	-114,4888723	-134,5321251	20,04
5,5	-115,7263468	-135,3599788	19,63
6	-116,8557011	-136,1157501	19,26
6,5	-117,8942652	-136,8109922	18,92
7	-118,85551	-137,4546859	18,60
7,5	-119,7501145	-138,0539503	18,30
8	-120,5866875	-138,6145248	18,03
8,5	-121,3722703	-139,1411036	17,77
9	-122,1126959	-139,6375752	17,52
9,5	-122,8128502	-140,1071972	17,29
10	-123,4768669	-140,5527251	17,08

Tabela 2.9. Valores do ruído de fase calculados com f_{cint} = 500 kHz.

Figura 2.10. Gráfico comparativo com $f_{c\,{\rm int}}$ = 500 kHz.

		f (fm)	Diference
f_{m} (kHz)	\pounds (fm) dBc / Hz	Sem Flicker Noise	(dB)
0	-67	-100,5	33,50
0,5	-81,51965386	-114,5321251	33,01
1	-90,54838271	-120,5527251	30,00
1,5	-95,82894977	-124,0745502	28,25
2	-99,57494145	-126,573325	27,00
2,5	-102,4800717	-128,5115252	26,03
3	-104,8533393	-130,0951501	25,24
3,5	-106,8595735	-131,4340859	24,57
4	-108,5971626	-132,5939249	24,00
4,5	-110,1295694	-133,6169753	23,49
5	-111,5001255	-134,5321251	23,03
5,5	-112,7397377	-135,3599788	22,62
6	-113,8712265	-136,1157501	22,24
6,5	-114,9119219	-136,8109922	21,90
7	-115,8752949	-137,4546859	21,58
7,5	-116,7720245	-138,0539503	21,28
8	-117,6107193	-138,6145248	21,00
8,5	-118,3984208	-139,1411036	20,74
9	-119,140962	-139,6375752	20,50
9,5	-119,8432289	-140,1071972	20,26
10	-120,509355	-140,5527251	20,04

2.3.9. Simulação 9: F_{cint} = 1 MHz

Tabela 2.10. Valores do ruído de fase calculados com f_{cint} = 1 MHz.

Figura 2.11. Gráfico comparativo com f_{cint} = 1 MHz.

0		\pounds (fm)	Diferença
f_m (kHz)	\pounds (fm) dBc / Hz	Sem Flicker Noise	(dB) ³
0,1	-50,5	-100,5	50,00
0,5	-71,52160765	-114,5321251	43,01
1	-80,55228921	-120,5527251	40,00
1,5	-85,83480791	-124,0745502	38,24
2	-89,58275017	-126,573325	36,99
2,5	-92,48982994	-128,5115252	36,02
3	-94,86504593	-130,0951501	35,23
3,5	-96,87322746	-131,4340859	34,56
4	-98,61276294	-132,5939249	33,98
4,5	-100,1471149	-133,6169753	33,47
5	-101,5196152	-134,5321251	33,01
5,5	-102,7611705	-135,3599788	32,60
6	-103,8946013	-136,1157501	32,22
6,5	-104,9372377	-136,8109922	31,87
7	-105,9025506	-137,4546859	31,55
7,5	-106,801219	-138,0539503	31,25
8	-107,6418516	-138,6145248	30,97
8,5	-108,4314899	-139,1411036	30,71
9	-109,1759668	-139,6375752	30,46
9,5	-109,8801683	-140,1071972	30,23
10	-110,5482279	-140,5527251	30,00

2.3.10. Simulação 9: F_{cint} = 10 MHz

Tabela 2.11. Valores do ruído de fase calculados com $\,f_{c\,\rm int}$ = 10 MHz.

Figura 2.12. Gráfico comparativo com $f_{c\,\rm int}$ = 10 MHz.

2.4. Comentários Finais e Conclusões

Ao longo do presente capítulo foram introduzidas idéias básicas que permitem descrever o desempenho de ruído de um oscilador. A partir de um circuito oscilador RLC, da expressão da energia armazenada no campo elétrico de um capacitor, da tensão em seus terminais e de seu fator de qualidade foi possível obter uma expressão capaz de descrever a relação sinal ruído de um oscilador à medida que a freqüência considerada se distancia da freqüência de ressonância ou de oscilação do circuito.

Pode-se observar pela expressão obtida que quanto melhor o desempenho de ruído de fase, a variação da potência de oscilação ocorrerá de forma mais abrupta à medida que a freqüência de *"offset"* amplia-se. Para um oscilador ideal, uma fração de Hertz corresponderia à potência nula, isto é, a característica deste oscilador corresponderia a uma função impulso na freqüência de oscilação. Esta performance está associada a um fator de qualidade infinito, isto é, perdas nulas no circuito RLC.

Verificou-se que três termos influenciam na performance de ruído do oscilador:

- O ruído de cintilação (*Flicker Noise*) dominante em região muito próxima a freqüência de oscilação f₀;
- O ruído onde a equação de Lesson é dominante, situado geralmente acima de 5 kHz até o valor de f₀/2Q;
- 3. O ruído térmico, dominante para afastamentos acima de $f_0/2Q$.

Nas aplicações em telecomunicações, a performance de ruído de fase é geralmente considerada para afastamentos de 10 kHz e 100 kHz da portadora.

Pode-se finalmente destacar que foram obtidos os valores do ruído de fase descrito pela Equação (2.14) considerando-se que o ruído de cintilação estaria atuando em valores de 1 kHz até 10 MHz. Esta consideração será analisada nos próximos capítulos em função das medições realizadas.